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Abstract A general min–max principle established by Ghoussoub is extended to the
case of functionals f which are the sum of a locally Lipschitz continuous term and
of a convex, proper, lower semicontinuous function, when f satisfies a compactness
condition weaker than the Palais–Smale one, i.e., the so-called Cerami condition.
Moreover, an application to a class of elliptic variational–hemivariational inequalities
in the resonant case is presented.
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1 Introduction

Starting from the well-known mountain pass theorem (briefly, MPT) of Ambrosetti
and Rabinowitz [1], many authors were interested in finding critical points of real-
valued functions f defined on an infinite dimensional Banach space X, obtaining
several generalizations of the MPT, which allow to solve wide classes of ordinary
or partial differential equations, as well as variational or variational–hemivariational
inequalities and elliptic equations with discontinuous nonlinearities. In particular, the
existence of critical points was prevalently investigated along the following directions:

(a) the boundary conditions are relaxed (namely, certain inequalities in the min-max
principles are allowed to be non-strict);
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(b) f is required to be nonsmooth;
(c) the ‘Palais–Smale condition’ (briefly, PS) is weakened.
When f is a C1 function on X, the case (a) was completely studied by Pucci and Serrin
[19, Theorem 1], Rabinowitz [20, Theorem 2.13], Ghoussoub and Preiss [11, Theorem
1.bis], Du [8, Theorem 2.1] and, for very general classes of dual sets, Ghoussoub [10,
Theorem 1.bis].

In order to (b), a critical point theory for functions which are locally Lipschitz
continuous on X was first developed by Chang [5]. Subsequently, Szulkin treated the
case when f: X → IR ∪ {+∞} is a function having the following structure

f (u):= �(u)+ ψ(u) for all u ∈ X, (1)

where � ∈ C1(X, IR) and ψ: X → IR ∪ {+∞} is convex, proper, and lower semicon-
tinuous (see [22]). Both [5, 22] were finally unified by Motreanu and Panagiotopoulos,
which studied the more general case when f is like in (1), but� is only locally Lipschitz
continuous on X (see [16]).

Inside the nonsmooth critical point theory, the study of (a) was successfully devel-
oped for locally Lipschitz continuous functions by Motreanu and Varga [18, Theorem
2.1] and Barletta and Marano [2, Theorem 4.1]. This investigation was continued in the
Motreanu and Panagiotopoulos’ framework by Marano and Motreanu [14, Theorem
3.1], while in [13] the authors extend the general min-max principle of Ghoussoub
[10] when, in addition, ψ is required to be continuous on every compact subset of X
on which it is bounded.

Finally, first Cerami [4] and subsequently Bartolo et al. [3] in a similar way, intro-
duced, for C1 functions, a compactness condition, namely the ‘Cerami condition’
(briefly, (C)), which generalizes the usual (PS). In [12], Kourogenis and Papageorgiou
extended the theory of Chang in direction (a) when the (PS) is replaced by (C). The
(C) condition has been employed fruitfully, for example, by Schechter when f is C1

(see [21]) and Marano and Papageorgiou when f is locally Lipschitz continuous (see
[15]). However, to the best of our knowledge, nothing was said for the Motreanu and
Panagiotopoulos’ setting when condition (C) is required instead of (PS).

The main purpose of this paper is to fill in such a gap. In Sect. 2, we introduce the
(C) condition for functions having the same structure of those previously introduced
in [13] and we state a deformation lemma (Theorem 2.1 below) which represents a
useful version of Theorem 2.2 of [13]. In Sect. 3, we obtain a general critical point
result (see Theorem 3.2) when (a) holds and (C) is assumed. An application to an
elliptic variational–hemivariational inequality in the resonant case patterned after
Problem (0.4) in [3] is then presented in Sect. 4.

2 Some preliminaries

Let (X, ‖·‖)be a real Banach space. If V is a subset of X, we write int(V) for the interior
of V, V for the closure of V, ∂V for the boundary of V. When V is nonempty, x ∈ X,
and δ > 0, we define B(x, δ) := {z ∈ X : ‖z − x‖ < δ} as well as Bδ := B(0, δ) and

d(x, V) := inf
z∈V

‖x − z‖, Nδ(V) = {z ∈ X : d(z, V) < δ)}.
Given x, z ∈ X, the symbol [x, z] indicates the line segment joining x to z, namely

[x, z] := {(1 − t)x + tz : t ∈ [0, 1]} .
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Moreover, ]x, z] := [x, z] \ {x}. We denote by X∗ the dual space of X, while 〈·, ·〉 stands
for the duality pairing between X∗ and X. A function �: X → IR is called locally
Lipschitz continuous when to every x ∈ X there correspond a neighbourhood Vx of
x and a constant Lx ≥ 0 such that

|�(z)−�(w)| ≤ Lx‖z − w‖ ∀z, w ∈ Vx .

If x, z ∈ X, we write �0(x; z) for the generalized directional derivative of � at the
point x along the direction z, i.e.,

�0(x; z) := lim sup
w→x, t→0+

�(w + tz)−�(w)
t

.

It is known [6, Proposition 2.1.1] that �0 is upper semicontinuous on X × X. The
generalized gradient of the function � in x, denoted by ∂�(x), is the set

∂�(x) :=
{

x∗ ∈ X∗ : 〈x∗, z〉 ≤ �0(x; z) ∀z ∈ X
}

.

Proposition 2.1.2 of [6] ensures that ∂�(x) turns out nonempty, convex, in addition to
weak* compact. Hence, we can consider

m(x) = inf{‖x∗‖ : x∗ ∈ ∂�(x)}, being attained.

Let f be a function on X satisfying the structural hypothesis

(Hf ) f (x) := �(x)+ ψ(x) for all x ∈ X, where �: X → IR is locally Lipschitz contin-
uous while ψ: X → IR ∪ {+∞} is convex, proper, and lower semicontinuous.

Put Dψ := {x ∈ X : ψ(x) < +∞}. Since ψ turns out continuous on int(Dψ) (see for
instance [7, Exercise 1, p. 296]) the same holds regarding f . To simplify notation, always
denote by ∂ψ(x) the subdifferential of ψ at x in the sense of convex analysis, while

D∂ψ := {x ∈ X : ∂ψ(x) �= ∅} .

Theorem 23.5 of [7] gives int(Dψ) = int(D∂ψ). Moreover, by Theorems 23.5 and 23.3
in [7], ∂ψ(x) is always convex and weak* closed. We say that x ∈ Dψ is a critical point
of f when

�0(x; z − x)+ ψ(z)− ψ(x) ≥ 0 ∀z ∈ X .

If ψ ≡ 0, it clearly signifies 0 ∈ ∂�(x), namely x is a critical point of � according to
[5, Definition 2.1]Chang. The symbol K(f ) indicates the set of all critical points for f .
Given a real number c, we write

Kc(f ) := K(f ) ∩ f −1(c) and fc := {x ∈ X : f (x) ≤ c} .

If Kc(f ) �= ∅ then c ∈ IR is said to be a critical value of f .
Let S be a nonempty closed subset of X. The function f is said to fulfil the Cerami
condition at the level c and around the set S provided

(C)S,c Every sequence {xn} ⊆ X such that d(xn, S) → 0, f (xn) → c, and

(1 + ‖xn‖)
(
�0(xn; x − xn)+ ψ(x)− ψ(xn)

)
≥ −εn‖x − xn‖ (2)

for every n ∈ IN and x ∈ X, where εn → 0+, possesses a convergent subse-
quence.
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When S = X we simply write (C)c in place of (C)S,c. Moreover, if (C)c is verified at
any level c, we write (C).

The following Cerami condition at level c for functions � : X → IR which are
locally Lipschitz continuous was introduced in [12].

(C)c Every sequence {xn} ⊆ X such that �(xn) → c and

(1 + ‖xn‖)m(xn) → 0 (3)

possesses a convergent subsequence.

The result below discusses the relationship between (C)c and (C)c.

Proposition 2.1 If ψ = 0, (C)c reduces to (C)c.

Proof It is sufficient to show the equivalence between (2) and (3). Assume that (2)
holds. Then, there exists x∗

n ∈ ∂�(xn) such that m(xn) = ‖x∗
n‖ for every n ∈ IN. Hence,

(1 + ‖xn‖)�0(xn; x − xn) ≥ (1 + ‖xn‖)〈x∗
n, x − xn〉 ≥ −(1 + ‖xn‖)‖x∗

n‖‖x − xn‖,

that is

(1 + ‖xn‖)�0(xn; x − xn) ≥ −εn‖x − xn‖
for every n ∈ IN, x ∈ X, where εn = (1 + ‖xn‖)m(xn) → 0 and (1) is verified (with
ψ = 0).

Conversely, we admit that (1) (withψ = 0) is satisfied. Sinceχn(z) = 1+‖xn‖
εn

�0(xn; z)
is continuous, convex, χn(0) = 0 and χn(z) ≥ −‖z‖ for every n ∈ IN, z ∈ X, by Lemma
1.3 of [22] there exists x∗

n ∈ X∗ with ‖x∗
n‖ ≤ 1 such that

χn(z) ≥ 〈x∗
n, z〉

for every n ∈ IN, z ∈ X. Thus, w∗
n = εn

1+‖xn‖ x∗
n ∈ ∂�(xn) and

(1 + ‖xn‖)m(xn) ≤ (1 + ‖xn‖)‖w∗
n‖ = εn‖x∗

n‖ ≤ εn,

so that (2) is verified. �

Let S be a nonempty, closed subset of X. The function f is said to fulfill the (PS)
condition at the level c and around the set S is:

(PS)S,c Every sequence {xn} ⊆ X such that d(xn, S) → 0, f (xn) → c, and

�0(xn; x − xn)+ ψ(x)− ψ(xn) ≥ −εn‖x − xn‖ (4)

for every n ∈ IN, x ∈ X, where εn → 0+, possesses a convergent subsequence.

We want explicitly observe that condition (C)S,c is a weaker form of the (PS)S,c
condition.

Proposition 2.2 Let (Hf ) and (PS)S,c be fulfilled. Then f satisfies condition (C)S,c.

Proof Let {xn} ⊆ X such that d(xn, S) → 0, f (xn) → c, and

(1 + ‖xn‖)
(
�0(xn; x − xn)+ ψ(x)− ψ(xn)

)
≥ −εn‖x − xn‖
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for every n ∈ IN and x ∈ X, where εn → 0+. Hence,

�0(xn; x − xn)+ ψ(x)− ψ(xn) ≥ −ε̄n‖x − xn‖
for every n ∈ IN and x ∈ X, where ε̄n = εn/(1 + ‖xn‖) → 0+. At this point, by
condition (PS)S,c, {xn} admits a convergent subsequence and the proof is complete.

�

Remark 2.1 It is simple to verify that condition (C)S,c is equivalent to (PS)S,c on
bounded sets. In fact, if f satisfies condition (C)S,c, {xn} is bounded and such that (4)
holds, then there exists M > 0 with ‖xn‖ ≤ M ∀n ∈ IN, hence

1
1 + M

(�0(xn; x − xn)+ ψ(x)− ψ(xn)) ≥ − εn

1 + M
‖x − xn‖ ≥ − εn

1 + ‖xn‖‖x − xn‖.

for every n ∈ IN and x ∈ X. So that (2) holds, where εn(1 + M) → 0+.

The following version of Theorem 2.2 of [13] will be particularly useful.

Theorem 2.1 Let (Hf )be fulfilled, let ε > 0, and let B and C be two nonempty closed sets
in X. Suppose that C is compact, B∩C = ∅, C ⊆ Dψ and fix M > max {1, maxx∈C ‖x‖}.
If, moreover,

(a1) to each x ∈ C there corresponds a point ξx ∈ Xsuch that

(1 + ‖x‖)(�0(x; ξx − x)+ ψ(ξx)− ψ(x)) < −5εM‖ξx − x‖,

then for every k > 1 there exist t0 ∈ (0, 1],α ∈ C0([0, 1] × X, X) and ϕ ∈ C0(X, IR+
0 )

with the following properties:

(i1) α(t, Dψ) ⊆ Dψ∀t ∈ [0, t0) and α(t, x) = x ∀(t, x) ∈ [0, t0)× B.
(i2) ‖α(t, x)− x‖ ≤ kt ∀(t, x) ∈ [0, t0)× X.
(i3) f (α(t, x))− f (x) ≤ − 5εM

1+Mϕ(x)t ∀(t, x) ∈ [0, t0)× Dψ .
(i4) ϕ(x) = 1 ∀x ∈ C.

Proof Put σ = 5εM
1+M and verify that

(a′
1) to each x ∈ C there corresponds a point ξx ∈ X such that

�0(x; ξx − x)+ ψ(ξx)− ψ(x) < −σ‖ξx − x‖.

If x ∈ C then, by (a1), we can find a ξx ∈ X, with ξx �= x, satisfying

�0(x; ξx − x)+ ψ(ξx)− ψ(x) < − 5εM
1 + ‖x‖‖ξx − x‖. (5)

Hence, (a′
1) follows from (5) once one observes that − 5εM

1+‖x‖ < −σ . Now, the conclu-
sion is achieved by applying Theorem 2.2 of [13] with σ in place of ε. �

The following version [9, pp. 444, 456] of the famous variational principle of Eke-
land will be very useful.

Theorem 2.2 Let (Z, d) be a complete metric space, and let �: Z → IR ∪ {+∞} be a
proper, lower semicontinuous function bounded from below. Then to every ε, δ > 0
and z̄ ∈ Z satisfying �(z̄) < infz∈Z �(z) + ε, there corresponds a point z0 ∈ Z such
that

�(z0) ≤ �(z̄), d(z0, z̄) ≤ 1/δ, �(z)−�(z0) ≥ −εd(z, z0) ∀z ∈ Z.
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3 Existence of critical points

The main result of this section, Theorem 2.1 below, is a suitable version of Theorem
3.1 of [13]. Let f: X → IR ∪ {+∞} be fulfil the structural hypothesis

(H′
f ) f (x) := �(x) + ψ(x) for all x ∈ X, where �: X → IR is locally Lipschitz con-

tinuous while ψ : X → IR ∪ {+∞} is convex, proper and lower semicontinuos.
Moreover, ψ is continuous on any nonempty compact set A ⊆ X such that
supx∈A ψ(x) < +∞.

Let B be a closed subset of X, and let F be a class of compact sets in X. We say
that F is a homotopy-stable family with extended boundary B when for every A ∈ F
and every η ∈ C0([0, 1] × X, X) such that η(t, x) = x in ({0} × X)∪ ([0, 1] × B) one has
η({1} × A) ∈ F . The following assumptions will be posited in the sequel:

(a2) F is a homotopy-stable family with extended boundary B, the function f fulfills
condition (H′

f ), and

c = inf
A∈F

sup
x∈A

f (x) < +∞.

(a3) There exists a closed subset F of X such that

(A ∩ F) \ B �= ∅ ∀A ∈ F , (6)

while moreover,

sup
x∈B

f (x) ≤ inf
x∈F

f (x). (7)

Both (a2) and (a3) imply that

inf
x∈F

f (x) ≤ c. (8)

Theorem 3.1 Let (a2) and (a3) be satisfied. Then to every sequence {An} ⊆ F such
that limn→∞ supx∈An

f (x) = c there corresponds a sequence {xn} ⊆ X \B having the
following properties:

(i5) limn→∞ f (xn) = c.
(i6) (1 + ‖xn‖)(�0(xn; x − xn)+ψ(x)−ψ(xn)) ≥ −εn‖x − xn‖, ∀n ∈ N, x ∈ X, where

εn → 0+.
(i7) limn→∞ d(xn, F) = c provided infx∈F f (x) = c.
(i8) limn→∞ d(xn, An) = 0.

Proof The reasoning is chiefly adapted from that in [10, 13] to establish Theorems
1 and 3.1, respectively, but, for the reader convenience, we report here some details.
We begin by considering the case

inf
x∈F

f (x) = c. (9)

Pick an ε > 0 and choose Aε ∈ F such that

c ≤ sup
x∈Aε

f (x) < c + ε2

8
. (10)
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We shall look for a point xε ∈ X\B such that

c − ε2

8
≤ f (xε) < c + 5

4
ε2, (11)

(1 + ‖xn‖)(�0(xε ; x − xε)+ ψ(x)− ψ(xε)) ≥ −5εχ(ε)‖x − xε‖ ∀x ∈ X, (12)

d(xε , F) ≤ 3
2
ε, (13)

d(xε , Aε) ≤ ε

2
, (14)

where 0 < χ(ε) < 1, which obviously provides a sequence {xn} ⊆ X \B enjoying
properties (i5)− (i8). Put

A′
ε = {1} × Aε , Fε = Nε(F), Gε = ({0} × X) ∪ ([0, 1] × ((Aε \Fε) ∪ B))

and denote by L the space of all η ∈ C0([0, 1] × X, X) such that

η(t, x) = x ∀(t, x) ∈ Gε , sup
(t,x)∈[0,1]×X

‖η(t, x)− x‖ < +∞.

Clearly, ({0} × X) ∪ ([0, 1] × B) ⊆ Gε . Hence,

η(A′
ε) ∈ F ∀η ∈ L. (15)

It is a simple matter to verify that L, equipped with the metric ρ of the uniform
convergence, is complete. Finally, for every x ∈ X, let us consider

f1(x) = max{0, ε2 − εd(x, F)}, f2(x) = min
{ε2

8
, εd(x, ((Aε \Fε) ∪ B)

}

g(x) = f (x)+ f1(x)+ f2(x)

and define

I(η) = sup
x∈η(A′

ε )

g(x), ∀η ∈ L.

The function I : L → IR ∪ {+∞} is lower semicontinuos. Let η(t, x) = x for every
(t, x) ∈ [0, 1] × X. Gathering together (15), (6) and (9) one has

c + ε2 ≤ inf
η∈L

I(η) (16)

as well as

I(η) < inf
η∈L

I(η)+ ε2

4
. (17)

By Theorem 2.2, there exists η0 ∈ L such that

I(η0) ≤ I(η), (18)

ρ(η0, η) ≤ ε

2
, (19)
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I(η) ≥ I(η0)− ε

2
ρ(η, η0), ∀η ∈ L. (20)

From (18) it follows that

sup
x∈η0(A′

ε )

ψ(x) ≤ I(η)− min
x∈η0(A′

ε )
�(x) < +∞.

Hence, in view of (H′
f ), the function x �→ ψ(η0(1, x)) is continuous on Aε , as well

as x �→ g(η0(1, x)) ∀x ∈ Aε . At this point, we can consider the following nonempty
compact set

Cε =
{

w ∈ η0(A′
ε) : g(w) = max

x∈η0(A′
ε )

g(x)
}

.

Let us show that there exists z0 ∈ (η0(A′
ε ∩ F))\B in such a way that

f (z0) = max
x∈η0(A′

ε )∩F
f (x). (21)

Let ẑ ∈ η0(A′
ε) ∩ F be with f (̂z) = maxx∈η0(A′

ε )∩F f (x). If ẑ �∈ B, (21) is true with
z0 = ẑ. Otherwise, owing to (6), there exists z0 ∈ (η0(A′

ε) ∩ F)\B. Hence, by (7),

max
x∈η0(A′

ε )∩F
f (x) = f (̂z) ≤ sup

x∈B
f (x) ≤ inf

x∈F
f (x) ≤ f (z0) ≤ max

x∈η0(A′
ε )∩F

f (x)

and (21) is proved. Define B′ = (Aε \Fε) ∩ B. Using (21) and reasoning as in [10,
pp. 445–446] we obtain that

B′ ∩ Cε = ∅.

Fix Mε > max{1, maxw∈Cε ‖w‖}. We claim that there exists xε ∈ Cε satisfying

(1 + ‖xε‖)(�0(xε ; x − xε)+ ψ(x)− ψ(xε)) ≥ − 5εMε

1 + Mε

‖x − xε‖ ∀x ∈ X. (22)

Suppose (22) is false. Observe that 1 < 2Mε

1+Mε
and fix k ∈]1, 2Mε

1+Mε
[. Applying Theorem

2.1 to the sets B′ and C, (i1)− (i4) hold true for suitable t0 ∈]0, 1],α ∈ C0([0, 1]×X, X)
and ϕ ∈ C0(X, IR+

0 ). Pick λ ∈ [0, t1], where 0 < t1 < t0, and define

ηλ(t, x) = α(λt, η0(t, x)), (t, x) ∈ [0, 1] × X.

Making use of (i1) and (i2), it is easy to see that ηλ ∈ L and ϕ(η0, ηλ) ≤ λk. Hence,
from (20) one has

I(ηλ) ≥ I(η0)− λk
ε

2
. (23)

Moreover, in view of (i3), it follows that

sup
x∈ηλ(A′

ε )

f (x) ≤ I(η0)− 5εMε

1 + Mε

λ min
x∈η0(A′

ε )
ϕ(x) < +∞.

So, the functions x �→ ψ(ηλ(1, x)) and x �→ g(ηλ(1, x)), x ∈ Aε are continuous and
there exists xλ ∈ Aε such that g(ηλ(1, xλ)) = I(ηλ). Thanks to (23) we get

g(ηλ(1, xλ))− g(η0(1, x)) ≥ −λk
ε

2
∀x ∈ Aε (24)
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and (i3), (24) provides

−λk
ε

2
≤ g(ηλ(1, xλ))− g(η0(1, xλ)) ≤ − 5εMε

1 + Mε

λϕ(η0(1, xλ))+ 2ελk,

that is

ϕ(η0(1, xλ)) ≤ Mε + 1
2Mε

k ∀λ ∈ [0, t1]. (25)

Let x̂ ∈ Aε a cluster point of {xλ : λ ∈ [0, t1]}. Since (λ, x) �→ g(ηλ(1, x)) is continuous
on [0, t1] × {xλ : λ ∈ [0, t1]}, letting λ → 0+ in (24) we obtain

g(η0(1, x̂))− g(η0(1, x)) ≥ 0, ∀x ∈ Aε

namely x̂ ∈ Cε . This implies ϕ(η0(1, x̂)) = 1, against (25) which forces ϕ(η0(1, x̂)) ≤
1+Mε

2Mε
k < 1. Hence (22) is true. Let xε ∈ Cε satisfy (22). Then xε /∈ B and (12) is

verified with χ(ε) = Mε
1+Mε

. Obviously, xε = η0(1, x) with x ∈ Aε and x ∈ Fε . In fact, if
x ∈ Aε \Fε ⊆ B′ then xε = x ∈ C ∩ B′, which is absurd. At this point, by (19)

d(xε , F) ≤ ‖η0(1, x)− η(1, x)‖ + ε ≤ 3
2
ε

d(xε , Aε) ≤ ‖η0(1, x)− η(1, x)‖ ≤ ε

2

and (13), (14) are satisfied. It remains to verify (11). In order to do this, taking in mind
the choice of xε , (18), (10) and the properties of f1 and f2, we obtain

f (xε) ≤ g(xε) = I(η0) ≤ I(η) = sup
x∈Aε

g(x) < c + ε2

8
+ ε2 + ε2

8
= c + 5

2
ε2.

On the other hand, exploiting (16) yields

f (xε) = I(η0)− f1(xε)− f2(xε) ≥ inf
η∈L

I(η)− ε2 − ε2

8
≥ c − ε2

8

and the proof is complete under condition (9).
Assume now that

inf
x∈F

f (x) < c. (26)

Pick an ε > 0 and choose Aε ∈ F such that

c ≤ sup
x∈Aε

f (x) < c + ε2

4
. (27)

We shall look for a point xε ∈ X\B such that

c ≤ f (xε) < c + ε2

4
, (28)

(1 + ‖xε‖)(�0(xε ; x − xε)+ ψ(x)− ψ(xε)) ≥ −5εχ(ε)‖x − xε‖ ∀x ∈ X. (29)
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d(xε , Aε) ≤ ε

2
(30)

where 0 < χ(ε) < 1, which obviously provides a sequence {xn} ⊆ X \B enjoying
properties (i5)–(i8).
Denote by L the space of all η ∈ C0([0, 1] × X, X) such that

η(t, x) = x ∀(t, x) ∈ ({0} × X) ∪ ([0, 1] × B), sup
(t,x)∈[0,1]×X

‖η(t, x)− x‖ < +∞.

It is obvious that η(A′
ε) ∈ F ∀η ∈ L as well as L, equipped with the metric ρ of the

uniform convergence, is complete. The function I : L → IR∪{+∞} defined by putting

I(η) = sup
x∈η(A′

ε )

f (x) ∀η ∈ L

is lower semicontinuous, bounded from below by c and, thanks to (27), satisfies (17).
By Theorem 2.2, there exists η0 ∈ L such that (18)–(20) hold. Hence,

sup
x∈η0(A′

ε )

f (x) = I(η0) ≤ I(η) < +∞

and the function x �→ f (η0(1, x)) is continuous on Aε . Then, the set

Cε = {w ∈ η0(A′
ε) : f (w) = max

x∈η0(A′
ε )

f (x)}

is nonempty and compact. Putting together (7) and (26) we obtain

sup
x∈B

f (x) ≤ inf
x∈F

f (x) < c ≤ inf
x∈Cε

f (x),

which implies B ∩ Cε = ∅. The same reasoning as before gives a point xε ∈ Cε such
that

(1 + ‖xε‖)(�0(xε ; x − xε)+ ψ(x)− ψ(xε)) ≥ −5εχ(ε)‖x − xε‖ ∀x ∈ X,

where χ(ε) = Mε
1+Mε

, with Mε > {1, maxx∈Cε ‖x‖}, and (29) is proved. Moreover,
xε ∈ Cε and by (18) and (27) one has

c ≤ inf
x∈Cε

f (x) ≤ f (xε) = I(η0) ≤ I(η) = sup
x∈Aε

f (x) < c + ε2

4
.

Finally, (30) can be achieved as in the preceding case. �

A meaningful consequence of Theorem 2.1 is the following

Theorem 3.2 Let (a2) and (a3) be satisfied. Suppose that either (C)c or (C)F,c holds
according to whether infx∈F f (x) < c or infx∈F f (x) = c. Then Kc(f ) �= ∅. If moreover,
infx∈F f (x) = c, then Kc(f ) ∩ F �= ∅.

Proof Theorem 3.1 provides a sequence {xn} ⊆ X \B with properties (i5)–(i8). On
account of the Cerami condition we may assume that xn → x in X, where a subse-
quence is considered when necessary. The conclusion follows from (i5) to (i7). �

Suppose Q denotes a compact set in X, Q0 is a nonempty closed subset of Q, γ0 ∈
C0(Q0, X),� = {γ ∈ C0(Q, X) : γ |Q0 = γ0}, F = {γ (Q) : γ ∈ �}, and B = γ0(Q0).
From Theorem 3.2 we obtain the following



J Glob Optim (2007) 37:245–261 255

Theorem 3.3 Let the function f : X → IR ∪ {+∞} fulfill the following assumptions in
addition to (H′

f ).

(a4) supx∈Q f (γ (x)) < +∞ for some γ ∈ �.
(a5) There exists a closed subset F of X such that (γ (Q)∩ F)\γ0(Q0) �= ∅ ∀γ ∈ � and,

moreover, supx∈Q0
f (γ0(x)) ≤ infx∈F f (x).

(a6) Setting c = infγ∈� supx∈Q f (γ (x)), either (C)c or (C)F,c is satisfied, according to
whether infx∈F f (x) < c or infx∈F f (x) = c.

Then the conclusion of Theorem 3.2 holds true.

Remark 3.1 Making use of Theorems 3.2 and 3.3 all the structure results contained
in [13] can be stated with (PS)c replaced by (C)c.

4 An Application

Let�be a nonempty, bounded, open subset of the Euclidean N-space (IRN , |·|), N ≥ 3,
having a smooth boundary ∂�. Let H1

0(�) be the closure of C∞(�) in W1,2(�) and
let us consider the norm

‖u‖ :=
( ∫

�

|∇u(x)|2dx
)1/2 ∀u ∈ H1

0(�).

Denote by 2∗ the critical exponent for the Sobolev embedding H1
0(�) ↪→ Lp(�).

Recall that 2∗ = 2N
N−2 , if p ∈ [1, 2∗] then there exists a positive constant cp such that

‖u‖p ≤ cp‖u‖, u ∈ H1
0(�) (31)

and in particular, the embedding is compact whenever p ∈ [1, 2∗[ (see, e.g. [20, Prop-
osition B.7]). Consider the eigenvalue problem

{−�u = λu on �,
u|∂� = 0.

(32)

It is known that (32) possesses a sequence {λn} of positive eigenvalues fulfilling λ1 <

λ2 ≤ · · · ≤ λn ≤ · · · , and let {ϕn} be a corresponding sequence of eigenfunctions
normalized as follows

‖ϕn‖2 = 1 = λn‖ϕn‖2
2, n ∈ IN;∫

�

∇ϕm(x) · ∇ϕn(x)dx =
∫

�

ϕm(x)ϕn(x)dx = 0 provided m �= n. (33)

Assume that g : IR → IR satisfies the following conditions:

(g1) g is measurable.
(g2) There exists a > 0, p ∈]2, 2∗] such that |g(t)| ≤ a(1 + |t|p−1) for every t ∈ IR.

Then the functions G : IR → IR and G : H1
0(�) → IR given by

G(ξ) :=
∫ ξ

0
g(t)dt ∀ξ ∈ IR, G(u) :=

∫

�

G(u(x))dx ∀u ∈ H1
0(�)
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turn out well defined and locally Lipschitz continuous. For this reason, it makes sense
to consider their generalized directional derivatives G0 and G0. Moreover, on account
of formula (9) at p. 84 in [6], one has

G0(u; v) ≤
∫

�

G0(u(x); v(x))dx, u, v ∈ H1
0(�). (34)

Thanks to (g2), exploiting Theorem 14 of [17], leads to

|G(ξ)| ≤ 2a(1 + |ξ |p) for any ξ ∈ IR. (35)

Let s ≥ 2 be an integer such that λs−1 < λs and let

X2 := span{ϕ1, . . . ,ϕs}, X1 := X⊥
2 . (36)

Given a closed and convex subset K of H1
0(�) such that

X2 ⊆ K, (37)

consider the following elliptic variational-hemivariational inequality problem:

(Pλs ) Find u ∈ K such that

−
∫

�

∇u(x) · ∇(v − u)(x)dx + λs

∫

�

u(x)(v − u)(x)dx ≤ G0(u; v − u)

for all v ∈ K.

In order to solve problem (Pλs ) we will further assume that

(g′
2) Hypothesis (g2) holds with a ≤ α

8(m(�)+cp
p)

, where α = λs/λs−1 − 1.

(g3) lim sup|ξ |→+∞
G(ξ)
|ξ |2 < +∞.

(g4) lim|ξ |→+∞ supy∈∂G(ξ)(2G(ξ)− yξ) = −∞,

(g5) G(ξ) ≥ ∫ 1
0 g(t)dt ∀ξ ∈ IR.

Due to (34), any solution u of (Pλs) also fulfils the inequality

−
∫

�

∇u · ∇(v − u)dx + λs

∫

�

u(v − u)dx ≤
∫

�

G0(u(x); (v − u)(x))dx,

for all v ∈ K.
In particular, when g is continuous, while K := H1

0(�), the function u ∈ H1
0(�) turns

out a weak solution to the Dirichlet problem

−�u − λsu + g(u) = 0 in �, u|∂� = 0,

which has been previously investigated in [3].

Theorem 4.1 Suppose (g1), (g′
2), (g3) − (g5) hold true. Then problem (Pλs) admits at

least one solution.

Proof Let us define

G(ξ) := G(ξ)−
∫ 1

0
g(t)dt ∀ξ ∈ IR, G(u) :=

∫

�

G(u(x))dx ∀u ∈ H1
0(�).
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Let X1, X2 be as in (36). Put X := X1 ⊕ X2 = H1
0(�) and, for every u ∈ X, define

�(u) := 1
2

∫

�

|∇u(x)|2dx − λs

2

∫

�

u(x)2dx + G(u),

as well as

ψ(u) :=
{

0, if u ∈ K,
+∞ otherwise,

f (u) := �(u)+ ψ(u),

where K is as in (37). It is easy to verify that� is locally Lipschitz continuous. Hence,
f satisfies condition (H′

f ). We shall prove that f fulfils condition (C). Pick a sequence
{un} ⊂ X such that {f (un)} converges to some c̄ ∈ IR and

(1 + ‖un‖)
(
�0(un; v − un)+ ψ(v)− ψ(un)

)
≥ −εn‖v − un‖ (38)

for every n ∈ IN and v ∈ X, where εn → 0+.
We claim that {un} is bounded. If the assertion were false, we could suppose that

lim
n→+∞ ‖un‖ = +∞, (39)

where a subsequence is considered if necessary. Define wn := un‖un‖ for every n ∈ IN.
Since ‖wn‖ = 1, we may suppose that

wn ⇀ w in X, wn → w in L2(�) and a.e. . (40)

We shall prove that there exists ρ > 0 such that

G(un(x))
‖un‖2 ≤ 4a

(
1

‖un‖2 + ρp−2|wn(x)|2
)

∀n ∈ IN, x ∈ �. (41)

Indeed, by (g3) there exist a positive number δ such that, for a suitable ρ > 0,

sup
|ξ |>ρ

G(ξ)
|ξ |2 < δ.

Hence,

G(un(x))
‖un‖2 < δ|wn(x)|2, (42)

whenever |un(x)| > ρ. It is not restrictive to suppose that ρ > (δ/(4a))
1

p−2 . At this
point, (g2) and condition (35) ensures that

|G(ξ)| ≤ 4a(1 + |ξ |p) for any ξ ∈ IR, (43)

hence

G(un(x))
‖un‖2 ≤ 4a

(
1

‖un‖2 + |un(x)|p−2|wn(x)|2
)

(44)

for every n ∈ IN and x ∈ �. If |un(x)| > ρ, condition (42) forces

G(un(x))
‖un‖2 < 4aρp−2|wn(x)|2 < 4a

(
1

‖un‖2 + ρp−2|wn(x)|2
)

.

Otherwise, (41) is an immediate consequence of (44).
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Let �0 := {x ∈ � : w(x) = 0}. Obviously, thanks to (39) one has

|un(x)| → +∞ ∀x ∈ �\�0. (45)

Let us verify that

m(�\�0) > 0. (46)

If m(�\�0) = 0 then, since (g5) implies that

G(ξ) ≥ 0 ∀ξ ∈ IR, (47)

putting together (39)–(41), provides G(un(·))
‖un‖2 → 0 a.e. in � and

G(un(·))
‖un‖2 → 0 in L1(�). (48)

Observe next, since {f (un)} is bounded, there exists a positive number M such that

�(un) = f (un) ≤ M ∀n ∈ IN,

that is

1
2

∫

�

|∇un(x)|2dx − λs

2

∫

�

u2
n(x)dx +

∫

�

G(un(u))dx ≤ M ∀n ∈ IN.

Hence,

1
2

− λs

2
‖wn‖2

2 +
∫

�

G(un(x))
‖un‖2 dx ≤ M

‖un‖2 ∀n ∈ IN. (49)

At this point, bearing in mind (39), (48), (40) and the fact that m(�\�0) = 0, condition
(49) leads to a contradiction, and (46) is proved.

It is obvious that inequality (38) can be equivalently written as

(1 + ‖un‖)�0(un; v − un) ≥ −εn‖v − un‖ (50)

for every n ∈ IN and v ∈ K, where εn → 0+. Exploiting (50) with v = 0, condition
(34), as well as {un} ⊆ K one has

− εn
‖un‖

1 + ‖un‖ ≤ −‖un‖2 + λs‖un‖2
2 + G0

(un; −un)

≤ −2�(un)+ 2
∫

�

G(un(x))dx +
∫

�

G
0
(un(x); −un(x))dx

= −2f (un)+
∫

�

(
2G(un(x))− 〈zn(x), un(x)〉

)
dx (51)

for every n ∈ IN, where zn(x) ∈ ∂G(un(x)). Gathering (g2) and (g4) together yields a
constant M̄ > 0 such that

sup
y∈∂G(ξ)

(2G(ξ)− yξ) ≤ M̄ ∀ξ ∈ IR. (52)

Through (51) and (52) we obtain

−εn
‖un‖

1 + ‖un‖ ≤ −2f (un)+ m(�0)M̄ +
∫

�\�0

sup
y∈∂G(un(x))

(2G(un(x))− yun(x))dx
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for every n ∈ IN. Hence, from (45), (g4), (46) and the above inequality it follows

f (un) → −∞,

against the choice of {un} which, at this point, is proved to be bounded. Thus, passing
to a subsequence if necessary, we may suppose both un ⇀ u in X and un → u in
L2(�). Since K is convex and closed u ∈ K and exploiting (50) with v = u one has

− εn
‖un‖

1 + ‖un‖ + ‖un‖2 ≤
∫

�

∇un(x) · ∇u(x)dx − λs

∫

�

un(x)(u(x)− un(x))dx

+G0
(un; u − un) (53)

for every n ∈ IN. Thanks to the upper semicontinuity of G0 on L2(�)× L2(�) and the
convergence of {un} inequality (53) yields

lim sup
n→+∞

‖un‖2 ≤ ‖u‖2

that is un → u in X and condition (C) is satisfied.
Put

Q := {u ∈ X : ‖u‖ ≤ 1} ∩ X2, Q0 = ∂Q, F := X1,

γ0 = id|Q0 , � := {γ ∈ C0(Q, X) : γ|Q0 = γ0}.
Fix u ∈ Q and observe that, making use of (33), (43) and (31) one has

f (u) = �(u) = 1
2
(‖u‖2 − λs‖u‖2

2)+
∫

�

G(u(x))dx

≤ 1
2

s∑
i=1

(
1 − λs

λi

)
t2i + 4a

∫

�

(1 + |u(x)|p)dx

≤ 4a(m(�)+ cp
p). (54)

Hence

sup
u∈Q

f (u) < +∞.

Thanks to Proposition 2.1 of [3] we get

(γ (Q) ∩ F)\γ0(Q0) �= ∅ ∀γ ∈ �.

Let now u ∈ F. From (47) and (33) again one has

f (u) ≥ �(u) = 1
2

+∞∑
i=s+1

(
1 − λs

λi

)
t2i +

∫

�

G(u(x))dx ≥ 0.

Thus,

inf
u∈F

f (u) ≥ 0.
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Finally, fix u ∈ Q0, that is u ∈ X2 and ‖u‖ = 1. Reasoning as in (54) and exploiting
(g′

2) we obtain

f (u) ≤ 1
2

s∑
i=1

(
1 − λs

λi

)
t2i + 4a(m(�)+ ‖u‖p

p)

≤ −1
2
α‖u‖2 + 4a(m(�)+ cp

p‖u‖p)

= −1
2
α + 4a(m(�)+ cp

p) ≤ 0.

Hence,

sup
u∈Q0

f (u) ≤ 0 ≤ inf
u∈F

f (u).

At this point, Theorem 3.3 can be applied. So, there exists at least a point u ∈ X such
that

�0(u; v − u)+ ψ(v)− ψ(u) ≥ 0

for all v ∈ X. By definition of ψ , it follows that u ∈ K and �0(u; v − u) ≥ 0 for all
v ∈ K, namely u is a solution to problem (Pλs ) once observed that G0 = G0, and the
proof is complete. �

Example 4.1 Let s ≥ 2 be an integer such that λs−1 < λs and p ∈]2, 2∗[. Fix a positive
number θ such that θ ≤ α

8(m(�)+cp
p)

, where α = λs/λs−1 − 1. Define the function

g : IR → IR by setting

g(t) :=




θe2
(

t − |t|
t

)
e−|t|, |t| ≤ 2, t �= 0

θ , t = 0,
θ t − θ

|t|
t , |t| > 2.

A simple computation shows that, in this case one has

G(ξ) =
{

−θe2|ξ |e−|ξ |, |ξ | ≤ 2,
θ
2 ξ

2 − θ |ξ | − 2θ , |ξ | > 2

and all the assumptions of Theorem 4.1 are satisfied. Hence, problem (Pλs ) admits at
least a nontrivial solution.
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